Disinfection efficacy and safety of 222-nm UVC compared with 254-nm UVC: Systematic review and meta-analysis

Qian Liu, Xuyan Wang, Li Jiang, Yunzhou Fan, Fang Gao, Yanyan Wu, Lijuan Xiong

Productions

The production of the production of

PII: S0195-6701(25)00092-1

DOI: https://doi.org/10.1016/j.jhin.2025.04.004

Reference: YJHIN 7465

To appear in: Journal of Hospital Infection

Received Date: 11 December 2024 Revised Date: 24 February 2025

Accepted Date: 6 April 2025

Please cite this article as: Liu Q, Wang X, Jiang L, Fan Y, Gao F, Wu Y, Xiong L, Disinfection efficacy and safety of 222-nm UVC compared with 254-nm UVC: Systematic review and meta-analysis, *Journal of Hospital Infection*, https://doi.org/10.1016/j.jhin.2025.04.004.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Ltd on behalf of The Healthcare Infection Society.

Disinfection efficacy and safety of 222-nm UVC compared with 254-

2	nm UVC: Systematic review and meta-analysis
3	
4	Qian Liu ^{1#} , Xuyan Wang ^{1#} , Li Jiang ¹ , Yunzhou Fan ¹ , Fang Gao ¹ , Yanyan Wu ¹ , Lijuan
5	Xiong ¹ *
6	
7	1. Department of Nosocomial Infection Management, Union Hospital, Tongji Medical College,
8	Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
9	# Qian Liu and Xuyan Wang are co-first authors
10	* Corresponding Author: Lijuan Xiong
11	Email address: lijuanxiong@hust.edu.cn
12	Telephone numbers : +86 (027)85726293
13	
14	
15 16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26	Summary
----	---------

27 Background: Some studies have indicated disinfection with 222-nm Ultraviolet C (UVC) is more 28 effective than that with 254-nm UVC. However, other studies reported the opposite findings. 29 Moreover, additional studies have reported that 222-nm UVC exposure is safe for the skin and eyes. 30 This study aimed to identify and quantitatively synthesize all studies evaluating the disinfection 31 efficacy and safety of 222-nm UVC compared with 254-nm UVC. 32 Methods: We conducted a systematic review and meta-analysis. We searched Web of Science, 33 SCOPUS, Medline, Ovid Embase, and the Cochrane Library through November 2024 for studies that 34 evaluated the disinfection efficacy and safety of 222-nm UVC compared with 254-nm UVC. 35 Results: We identified 25 eligible publications including 15 publications providing data only on the 36 efficacy, 7 only on the safety, and the remaining 3 on both efficacy and safety. The pooled odds ratio 37 for studies comparing the efficacy of 222-nm UVC with that of 254-nm UVC was 1.382 (95% CI: 38 1.153-1.656, n=18 publications with 87 studies), indicating that 222-nm UVC is more effective for 39 disinfection. The pooled risk difference for studies evaluating the safety of 222-nm UVC radiation was 40 -0.211 (95% CI: -0.245,-0.177; n=10 publications with 29 studies), which indicates that the proportion 41 of normal cells producing cyclobutane pyrimidine dimers via 222-nm UVC is 21.1% less than that via 42 254-nm. 43 Conclusion: Compared with 254-nm UVC, 222-nm UVC not only exhibits comparable or potentially superior efficacy in disinfecting diverse microorganisms but also causes less DNA 44 45 damage to the mammalian cells.

47

46

Keywords: efficacy; safety; 222-nm; ultraviolet C; meta-analysis

Introduction

Ultraviolet C (UVC) light exposure is one of the most common techniques which is well known
to elicit highly germicidal effects [1], and UVC irradiation at 254-nm has been widely used. Recently,
far-UVC at 222-nm has been of great interest for pathogen inactivation, since the current evidence
suggests that 222-nm UVC exhibits hardly any harmful effect on human skin and inactivates a broad
spectrum of microorganisms [2,3]. Nevertheless, some studies have shown that 222-nm UVC exposure
induces neither DNA damage nor epidermal lesions [4,5], and others have indicated that 222-nm UVC
exposure results in DNA damage and transcriptional changes in mammalian cells [6].
Several studies have also compared the disinfection efficacy of 254-nm and 222-nm UVC and
have shown varying results. Marcus et al. [7] reported greater photoinactivation of bacterial spores,
UV-resistant vegetative bacteria and mould spores at 222 nm than at 254 nm. Similarly, Zhang and
colleagues [8] suggested that compared with 254-nm UV, 222-nm UVC irradiation showed a
comparable disinfection effect on airborne microorganisms. However, Narita et al.[9] reported that the
fungicidal effect of 222-nm UVC on fungal spores and hyphae was weaker than that of 254-nm UVC.
In addition, another study revealed that 254-nm UVC is more efficient than 222-nm UVC in
inactivating SARS-CoV-2 present in human saliva [10].
Considering that quantitative syntheses of these studies may provide evidence on the disinfection
efficacy and safety of 222-nm UVC and help to elucidate the odds ratios (ORs) or risk differences
(RDs), this study aims to quantitatively synthesize the findings of all studies that evaluated the
disinfection efficacy and safety of 222-nm UVC compared with 254-nm UVC and intends to perform
two meta-analyses: one summarizing studies evaluating the disinfection efficacy of 222-nm UVC
compared with 254-nm UVC, and the other exploring the safety of 222-nm UVC for mammalian cells

70	in comparison with 254-nm in order to provide information for future research and disinfection
71	applications of 222-nm UVC.
72	
73	Methods
74	Reporting Standards
75	The present meta-analysis complied with the standards of the Preferred Reporting Items for Systematic
76	Reviews and Meta-Analyses (PRISMA) 2020 guidelines [11].
77	Eligibility criteria
78	In accordance with the inclusion criteria outlined by the Patient Population or Problem, Intervention,
79	Outcomes (PICO) framework [12], the selection process for studies involved the following
80	requirements: (a) application of 222-nm UVC as part of the intervention; (b) evaluation of the
81	disinfection efficacy against various types of microorganisms or the safety; (c) comparison of 222-nm
82	UVC with 254-nm; and (d) inclusion of quantitative outcomes for evaluating the disinfection efficacy
83	(the inactivation ratio or logs of cell reduction) or for safety. Studies written in English or Chinese and
84	of any publication type were considered for inclusion.
85	Studies were excluded if they did not provide documented exposure to 222-nm UVC, did not
86	encompass an evaluation of disinfection efficacy or safety, did not involve comparisons between 222-
87	nm UV and 254-nm UVC exposure, or did not present quantitative outcomes for evaluating
88	disinfection efficacy or safety. Commentaries, editorials, and review articles without primary data were
89	also excluded.
90	Data Sources
91	A systematic search was conducted across the Web of Science, SCOPUS, Medline, Ovid Embase, and
92	Cochrane Library databases. The search strategy incorporated MeSH terms pertaining to "ultraviolet".

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

The complete search strategy for each database can be found in E-Table 1 of the Supplementary Information. The last search was performed on November 18, 2024. Furthermore, all the references of the included publications were reviewed. **Study Selection** Duplicate references were omitted. Two reviewers independently screened all titles and abstracts, and full-text examination was carried out for records that were deemed eligible for inclusion by either reviewer. In cases where conflicts arose, a third research member was consulted to facilitate discussion and reach a consensus. **Data Extraction** A form was formulated in compliance with the data extraction template offered by the Cochrane Consumers and Communication Review Group. Subsequently, the form was subjected to a pilot test involving ten randomly selected eligible articles, and appropriate modifications and enhancements were made. For the studies evaluating disinfection efficacy, the form included the year of publication, first author's name, country of study, type of microorganisms, medium of microorganisms, UV radiation dosage, and logs of cell reduction. For the studies evaluating the safety of 222-nm UV radiation, the form included the publication year, first author's name, country of study, medium, exposure time, UV radiation dosage and proportion of cyclobutane pyrimidine dimers (CPD)-positive cells. The data were independently extracted by the two reviewers using the same form, and discrepancies were resolved through deliberation with another research member. If some essential information was not presented in the original publications, efforts were made to acquire the data by emailing the corresponding authors. **Quality Assessment**

The quality of each individual study was evaluated using the Risk of Bias in Non-randomized

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

Studies—of Interventions (ROBINS-I) tool[13]. Assessment was conducted on seven domains based on signalling questions: bias due to confounding, bias in selection of participants into study, bias in classification of interventions, bias due to departure from intended interventions, bias due to missing data, bias in measurement of outcomes, and bias in selection of the reported results. Based on the answers to the signalling questions, each domain was classified as follows: low, moderate, serious, or critical risk of bias or no information. The overall risk of bias was defined by combining the results of the seven domains. If any of the seven domains were judged as serious or critical risk, the study was classified as exhibiting an overall serious or critical risk, respectively. The risk of bias was independently assessed by two reviewers, and any inconsistencies were resolved through discussion with an additional member of the research team. To assessment of the overall quality (certainty) of the evidence included in the meta-analysis, we adopted the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) approach, taking into consideration all relevant GRADE domains: methodological limitations, inconsistency, imprecision, indirectness, and publication bias. **Data Synthesis** Data analyses were performed using Stata Version 18.0 (Stata Corporation, College Station, Texas, USA), with the odds ratio (OR) and risk difference (RD) employed as measures of effect size. The heterogeneity across studies was evaluated using the I^2 statistic [14], with values of 50% or higher indicating substantial heterogeneity and values of 75% or higher indicating very high heterogeneity. Considering the microbial heterogeneity observed, we used a random effects model to calculate the summary estimate of each risk ratio and hazard ratio, along with 95% confidence intervals (CIs). We employed meta-analyses and forest plots to analyse the data. Furthermore, forest plots and

Begg's tests were utilized to investigate publication bias. To explore potential sources of heterogeneity, multiple meta-regression and subgroup analyses were performed with predetermined study-level characteristics, such as the country in which the study was conducted, type of microorganisms, and medium of the microorganisms. To assess the robustness of the results, sensitivity analyses were conducted to assess whether excluding studies with a high risk of bias influenced the estimated effect or heterogeneity of the outcome.

Results

Study selection

The searches identified a combined sum of 787 citations, comprising 112 from Medline, 264 from Embase Ovid, 143 from Web of Science, 264 from SCOPUS, and 4 from the Cochrane Library.

Subsequently, a total of 453 duplicate citations were eliminated. After the initial screening of titles and abstracts, we were able to identify 71 potentially eligible publications. Subsequently, an endeavour was made to obtain the complete texts of each candidate study for a more comprehensive evaluation, but the full text was unavailable for 5 articles. We excluded a total of 5 articles that were not original research, 31 articles that were not compared with 254-nm, and 30 articles that failed to provide information regarding the inactivation ratio or logs of cell reduction (E-Table 2). Therefore, 25 publications were included, with 15 providing data only on the disinfection efficacy, 7 providing data only on the safety, and the remaining 3 providing data on both efficacy and safety [2,15,16] (Figure 1). No eligible studies were found in the reference sections of the included publications.

Study characteristics

1. The 18 articles on the disinfection efficacy of 222-nm UVC compared with 254-nm UVC Our meta-analysis included 18 publications [2,7,8,10,15-28] (representing 87 studies published

161	from 2006 [7] to 2024 [23]) evaluating the efficacy of 222-nm in comparison to 254-nm. Table 1
162	presents the data collection form template and the extracted data of each study.
163	1.1 Study quality
164	The details of the quality assessment are presented in E-Table 3. Owing to large inconsistencies, studies
165	evaluating the disinfection efficacy of 222-nm UVC compared with that of 254-nm UVC have
166	exhibited a moderate quality of evidence. E-Table 4 provides the GRADE evidence profile.
167	1.2 Evidence Synthesis
168	Disinfection efficacy of 222-nm UVC compared with 254-nm UVC
169	Significant heterogeneity was observed among studies (P <0.001, P =99.9%), with individual effect
170	sizes ranging from 0.025 (95% CI: 0.024-0.027) to 37.036 (95% CI: 31.110-44.091). The meta-analysis
171	yielded an overall effect size of 1.382 (95% CI: 1.153-1.656), which is illustrated in Figure 2.
172	Additionally, the funnel plots (Figure 3) revealed no significant evidence of publication bias across
173	studies (Begg's test P =0.002; Egger's test P =0.002).
174	1.3 Meta-Regression and Subgroup Analysis
175	We investigated a multiple regression model with each possible source of heterogeneity (I^2
176	_res=99.83%, adjusted R^2 =11.32%; I^2 _res indicates residual variation due to heterogeneity) and found
177	that the country of study (P =0.001) was the potential sources of heterogeneity (Table 2). The studies
178	conducted in Africa, Asia and America exhibited greater combined effect sizes. Moreover, subgroup
179	analyses were undertaken to ascertain the factors contributing to heterogeneity, and a statistically
180	significant interaction was identified (P for interaction<0.001) favouring the L. monocytogenes and
181	SARS-CoV-2 as the species of the microorganisms.
182	1.4 Sensitivity analyses

183	The exclusion of any individual study did not change the overall effect size, which ranged from 1.330
184	(95% CI: 1.111-1.592) to 1.445 (95% CI: 1.249-1.672). This indicates that our results have a high
185	degree of robustness.
186	
187	2. The 10 articles providing data on the disinfection safety of 222-nm UVC
188	Our meta-analysis included 10 publications [2,15,16,29-35] representing 29 studies from 2017 [2] to
189	2024 [35] evaluating the disinfection safety of 222-nm UVC radiation. Table 3 presents the data
190	collection form template and the extracted data of each study.
191	2.1 Study quality
192	The details of the quality assessment are presented in E-Table 3. The studies exhibited a moderate
193	quality of evidence due to serious inconsistency (E-Table 4).
194	2.2 Evidence Synthesis
195	Significant heterogeneity was observed among studies (P <0.001, I ² =100.0%), with individual effect
196	sizes ranging from -0.625 (95% CI: -0.635, -0.614) to -0.033 (95% CI: -0.035, -0.032). The meta-
197	analysis yielded an overall effect size of -0.211 (95% CI: -0.245, -0.177), which is illustrated in Figure
198	4. Additionally, the funnel plots (Figure 5) revealed no significant evidence of publication bias across
199	studies (Begg's test P <0.001; Egger's test P <0.001).
200	2.3 Meta-regression and Subgroup Analysis
201	Subgroup analyses were performed to determine the factors contributing to heterogeneity (Table 4), and
202	a statistically significant interaction was identified; these analyses were performed in different
203	countries (P for interaction=0.002), with different medium of microorganisms (P for
204	interaction<0.001), and with various exposure time (P for interaction=0.004). These studies conducted
205	in America with mouse skin and human skin models, and with exposure time >24h exhibited less

206	combined effect sizes, which means greater difference between CPD% of 222nm and that of 254-nm.
207	Moreover, we investigated a multiple regression model with each possible source of heterogeneity (I^2
208	_res=99.92%, adjusted $R^2 = 17.06$ %).
209	2.4 Sensitivity analyses
210	The exclusion of any individual study, ranging from -0.197 (95% CI: -0.228, -0.165) to -0.218 (95%
211	CI:-0.253, -0.183) did not alter the overall effect size, which suggests that the results exhibit a high
212	level of robustness.
213	
214	Discussion
215	Principal Findings
216	The results obtained from the current meta-analysis suggest that the disinfection efficacy of 222-
217	nm UVC surpasses that of 254-nm UVC (OR: 1.382, 95% CI: 1.153-1.656). The findings of our study
218	revealed that the disinfection efficacy of 222-nm UVC is 1.382 times greater than that of 254-nm UVC.
219	Moreover, the results also show that the safety of 222-nm UVC surpasses that of 254-nm UVC (RD: -
220	0.211, 95% CI: -0.245, -0.177), which indicates that the proportion of normal cells producing CPD via
221	222-nm UVC is 21.1% less than that via 254-nm UVC at the same irradiation dose.
222	Despite the significant heterogeneity present in our two meta-analyses, these differences can be
223	partially explained by meta-regression and subgroup analyses. For the meta-analysis of disinfection
224	efficacy, the large heterogeneity observed in the findings could be attributed to variances in the country
225	in which the study was conducted and the specific microorganism types investigated. Moreover, studies
226	carried out in Africa, Asia and America exhibited greater effect sizes than those conducted in Europe.
227	We also observed that studies involving SARS-CoV-2 and Bacillus subtilis spores exhibited

considerably larger effect sizes than those involving alternative microorganisms. Similarly, significant
differences were also observed in a previous investigation from the Proceedings of the 2nd
International Congress on Ultraviolet Technology, in which the efficacy of inactivating Bacillus
subtilis was nearly twice as pronounced when exposed to 222-nm UVC as when it was exposed to 254-
nm UVC, in contrast to the findings for vegetative bacteria of the same strains [36]. This can be
partially attributed to the comparatively higher resistance exhibited by bacillus spores, as one might
expect, in comparison to the majority of microorganisms [37].
Our results found 222-nm UVC exhibits comparable efficacy to 254-nm in disinfecting
diverse microorganisms, which aligns with the findings of David J. Brenner who reported the
effectiveness of 222-nm UVC against multiple common pathogens [38]. The mechanism
responsible for the comparable disinfection efficacy of 222-nm UVC to that of 254-nm UVC has yet
to be determined [17]. Nonetheless, various mechanisms of protein damage can presumably be
responsible for the inactivation of microorganisms. First, in the initial study conducted by Clauß and
Grotjohann in 2008, it was observed that the photodegradation of proteins and the inactivation of
enzymes were significantly enhanced when exposed to the 222-nm UVC, as compared to the 254-nm
UVC [39]. In addition, Abdallah et al. indicated that the integrity of the bacterial membrane could be
very important for evaluating the disinfection efficacy of 222-nm UVC irradiation because UV light at
a wavelength of 222-nm exhibits a specific propensity for the degradation of bacterial outer membrane
proteins [40]. Furthermore, according to a study conducted by Yin et al. in 2015, it was observed that
the disinfection efficacy of 222-nm UVC was significantly greater than that of 254-nm UVC, which
can be attributed to the detrimental effects of 222-nm UVC on the cell envelope [41].
However, for the meta-analysis of safety, the large heterogeneity observed in the findings could be

attributed to variances in the medium of the microorganisms and the exposure time. Furthermore, we
also observed that studies with human skin models and mouse skin exhibited considerably less effect
sizes than those with rabbits. We found that effect sizes were significantly less for studies with
exposure time of ≥24h, which means greater difference between the CPD% of 222nm and that of
254nm. The establishment of the mechanism responsible for the superior safety of 222-nm UVC in
comparison to that of 254-nm UVC may be due to the limited penetration of far-UVC in biological
samples[2]: due to the strong absorbance in biological materials, far-UVC light cannot penetrate even
the outer (non-living) layers of human skin or eye; however, because bacteria and viruses are of
micrometer or smaller dimensions, far-UVC can penetrate and inactivate them [42].
The disinfection efficacy of far-UVC (222-nm) is influenced by several critical factors, including
the speed of reaction, duration of exposure, distance from the source, environmental conditions, and so
on. The speed of reaction or inactivation rate of 222-nm UVC was found by G.G. Matafonova et al. to
vary significantly across different bacterial species, including Bacillus cereus, Bacillus subtilis,
Escherichia coli O157:H7, Staphylococcus aureus and Streptococcus pyogenes [43]. Second, Hiroki
Kitagawa MD found that duration of exposure is another key factor, as the viral titre of SARS-CoV-2
was reduced on a plastic plate over the irradiation time of 222-nm UVC [44]. Third, distance from the
far-UVC source also plays a significant role, as the intensity of far-UVC decreases with distance. Last,
the environmental factors, such as humidity, temperature, ventilation air flows, and air quality, can
affect the effectiveness of far-UVC [45]. However, the absence of standardized testing protocols poses
a challenge for comparing results across studies. Regulatory agencies, such as the Environmental
Protection Agency (EPA), have emphasized the need for standardized methods to ensure the safe and
effective commercial application of UV technologies [46].

Several companies like Lumenlabs of China [47], Ushio Inc. of Japan [48, 49], and Vive, R-
Zero Systems of USA [50] have developed 222-nm UVC lamps for public spaces, and their 222-nm
UVC products have been explored and implemented in both clinical and public settings to prevent
cross-transmission of pathogens. Firstly, in Beijing Tiantan Hospital of China, the upper-room 222-nm
UVC radiation air sterilizers were installed at a height of 2.3–2.6m from the ground in the observation
room, computed tomography (CT) scanning room, rescue room and consulting room of the emergency
department. The study found 222-nm UVC could effectively reduce the total number of airborne
bacterial colonies and improve the environment, and the continuous using of it is helpful for keeping
the air safe and clean [47]. Secondly, in Shimane University Hospital of Japan, a prospective
observational study involved a 36-month follow-up of physicians working in an ophthalmic
examination room equipped with 222-nm UVC. Results indicated no significant changes in ocular
examinations and no delayed side effects, suggesting no clinically significant ocular hazards associated
with prolonged exposure to 222-nm UVC under real-world conditions [48]. Thirdly, a study in USA
examined human exposure to air contaminants under the 222-nm UVC system operation in an office,
which revealed that the ceiling-mounted 222-nm UVC lamp reduces human exposure to airborne
pathogens by up to 80% [49]. What's more, a study in Japan indicated that a 222-nm ultraviolet
disinfection device with a motion sensor installed in a shared bathrooms reduced the aerobic bacteria
surface contamination of the bathroom [51]. In addition, in a study of India, UVC-based devices were
used for the sanitization of air through heating, ventilation and air conditioning systems in closed
spaces, which showed that the use of UVC radiation could result in the reduction of the risk of
infection in occupied spaces by up to 90% [52].

Some studies have suggested that 222-nm could be an alternative to 254-nm. Ha J and his

colleagues' study indicated that the 222-nm UVC surface disinfecting system can be applied as an alternative to conventional LP Hg lamp treatment by the dairy industry [17]. A review in 2022 suggests that 222-nm KrCl would be an alternative to conventional 254-nm lamps for achieving target removal levels of both pathogens and contaminants of emerging concern in potable water reuse [53]. However, the researchers in Norway installed 222nm UVC lamp in a frequently used elevator, but no significant differences were found in the microbial content between the control elevator and the UV-lamp elevator, which suggests that the 222-nm UVC requires a longer time to kill the bacteria, while the people traffic were continuously re-contaminating the elevators [54]. Therefore, whether 222-nm UVC can serve as a viable alternative to 254-nm UVC remains an open question, necessitating further research to comprehensively evaluate its efficacy, safety, and practical applications. What's more, while 222-nm UVC shows potential as a supplementary tool for hospital decontamination, the evidence regarding its applicability to human wounds during surgical procedures remains inconclusive and warrants further investigation [55].

Strengths and Limitations

There are several strengths to the present study. First, the evaluation of the disinfection efficacy and safety of 222-nm UVC is timely and pertinent for researchers, manufacturers, and users. Second, we intentionally conducted two meta-analyses regarding both the efficacy and safety of 222-nm UVC compared with 254-nm, allowing us to include all potentially relevant studies. Third, we conducted a comprehensive search across multiple scholarly databases, including not only Web of Science and SCOPUS which include academic journals covering natural sciences, engineering technology, social sciences, art, humanities and other fields, but also the Cochrane Library which includes grey literature

for relevant studies published up until November, 2024. Moreover, we ensured that every step of the review and extraction process was executed independently and in duplicate.

However, it is important to acknowledge that the present study also encompasses certain noteworthy limitations. First, it is plausible that pertinent scholarly articles were overlooked, such as those that cannot be acquired with the full text, thus resulting in a potential element of selection bias. Second, despite our thorough search of the Cochrane Library, it is possible that relevant grey literature in alternative databases might have been missed. Third, although the review and extraction processes were conducted independently and in duplicate, it is important to acknowledge that the outcomes were still susceptible to subjectivity and reliance on the article reports rather than a direct evaluation of the studies. Fourth, despite the reliability of the ROBINS-I tool, there exists a potential for reviewer bias attributable to the subjective nature of the reviewers. In addition, despite our subgroup analyses revealing discrepancies in the study's geographical location, diversity of microorganisms, exposure time, and cultivation medium used, the substantial heterogeneity observed across the studies poses a challenge in extrapolating the findings to a broader context. Moreover, we did not assess potential sources of heterogeneity, such as the speed of reaction, duration of exposure, distance from the source, environmental conditions, and so on. Our study lacks standardized testing conditions for comparing the efficacy of different UV wavelengths, which may affect the generalizability of our findings. Finally, the analysis was not registered on PROSPERO and the review protocol was not prepared.

Implications

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

Our research has significant implications for both scientific investigations and practical applications of 222-nm UVC in disinfection processes. Although our conclusions may be weakened by the large heterogeneity among studies, the results of our review and meta-analyses indicate that, compared with

254-nm UVC, 222-nm UVC not only exhibits comparable or potentially superior efficacy in disinfecting diverse microorganisms but also causes less DNA damage to the mammalian cells.

The pooled estimates of the meta-analysis on efficacy suggested that the disinfection efficacy of 222-nm UVC is greater than that of 254-nm UVC. However, although no significant reporting bias was found, the quality of evidence was deemed to be moderate owing to the substantial heterogeneity observed among the included studies. Thus, further research is required to determine with confidence whether 222-nm UVC is more effective than 254-nm UVC for disinfection. Pooled estimates calculated during our meta-analysis on safety indicated that 222-nm UVC caused less DNA damage to the mammalian cells than 254-nm UVC. Large heterogeneity was observed among the included studies, resulting in evidence of moderate quality, suggesting that further research is likely to change the estimate. In addition, further research is necessary to comprehensively evaluate the efficacy, safety, and practical applications of 222-nm UVC in real-world settings, as its potential to serve as a viable alternative to 254-nm UVC remains an open question. What's more, the applicability of 222-nm UVC for use on human wounds during surgical procedures remains an area requiring further investigation. Finally, future research should prioritize the development and adoption of standardized testing protocols to enable consistent and reliable evaluations of UV efficacy.

Conclusion

The findings of the present study demonstrated that, compared with 254-nm UVC, 222-nm UVC not only exhibits comparable or potentially superior efficacy in disinfecting diverse microorganisms but also causes less DNA damage to mammalian cells.

361 362	
363	Acknowledgments
364	Funding
365	This work was supported by the Public Health Leading Talents Program in Hubei Province
366	[EWT(2021) No. 73], China.
367	
368	Competing interests
369	The authors declare that they have no conflicts of interest.
370	
371	Ethics
372	Not required.
373	
374	Author contributions
375	QL and XYW performed the review, extraction, and data analysis. In case of conflicts, LJX was
376	consulted to facilitate discussion and achieve consensus. XYW prepared the Introduction section of the
377	first draft, and QL prepared the remaining parts of the paper. YYW, FG, LJX, YZF, LJ, XYW, and QL
378	contributed to manuscript revision. All authors have read and approved the final manuscript.
379	
380	
381	
382	Tables
383	Table 1. Description of included studies on efficacy of 222-nm UVC compared with 254-nm

384	Table 2. Meta-Regression and Subgroup Analysis of studies on efficacy of 222-nm UVC
385	Table 3. Description of included studies on safety of 222-nm UVC compared with 254-nm
386	Table 4. Meta-Regression and Subgroup Analysis of studies on safety of 222-nm UVC
387	
388	Figure legends
389	Figure 1. Study selection process
390	Figure 2. Forest plot of studies on the efficacy of 222-nm UVC
391	Figure 3. Funnel plot of studies on the efficacy of 222-nm UVC
392	Figure 4. Forest plot of studies on the safety of 222-nm UVC
393	Figure 5. Funnel plot of studies on the safety of 222-nm UVC
394	
395	The supplemental information contains E-Table 1-4 and PRISMA 2020 check
396	References
397	[1] Boyce JM. Modern technologies for improving cleaning and disinfection of environmental
398	surfaces in hospitals. Antimicrob Resist Infect Control 2016;5(1).
399	[2] Buonanno M, Ponnaiya B, Welch D, Stanislauskas M, Randers-Pehrson G, Smilenov L, et al.
400	Germicidal efficacy and mammalian skin safety of 222-nm uv light. Radiat Res
401	2017;187(4):483-91. https://doi.org/https://dx.doi.org/10.1667/RR0010CC.1.
402	[3] Buonanno M, Welch D, Shuryak I, Brenner DJ. Far-uvc light (222nm) efficiently and safely
403	inactivates airborne human coronaviruses. Sci Rep 2020;10(1):10285.
404	https://doi.org/https://dx.doi.org/10.1038/s41598-020-67211-2.
405	[4] Narita K, Asano K, Morimoto Y, Igarashi T, Nakane A. Chronic irradiation with 222-nm uvc
406	light induces neither dna damage nor epidermal lesions in mouse skin, even at high doses. Plos
407	One 2018;13(7):e201259. https://doi.org/https://dx.doi.org/10.1371/journal.pone.0201259.
408	[5] Barnard IRM, Eadie E, Wood K. Further evidence that far-uvc for disinfection is unlikely to
409	cause erythema or pre-mutagenic dna lesions in skin. Photodermatology, Photoimmunology &
410	Photomedicine 2020. https://doi.org/https://dx.doi.org/10.1111/phpp.12580.
411	[6] Ong Q, Wee W, Cruz JD, Teo JWR, Han W. 222-nm far uvc exposure results in dna damage and
412	transcriptional changes to mammalian cells. Biorxiv 2022.
413	https://doi.org/https://dx.doi.org/10.1101/2022.02.22.481471.

- 414 [7] Clauß M. Higher effectiveness of photoinactivation of bacterial spores, uv resistant vegetative 415 bacteria and mold spores with 222 nm compared to 254 nm wavelength. Acta Hydrochimica Et 416 Hydrobiologica 2006.
- [8] Zhang H, Lai ACK. Evaluation of single-pass disinfection performance of far-uvc light on
 airborne microorganisms in duct flows. Environ Sci Technol 2022;56(24):17849-57.
 https://doi.org/https://dx.doi.org/10.1021/acs.est.2c04861.
- 420 [9] Narita KAKN. Ultraviolet c light with wavelength of 222 nm inactivates a wide spectrum of 421 microbial pathogens. The Journal of Hospital Infection 2020;105(3).
- [10] Sesti-Costa R, Negrao CVZ, Shimizu JF, Nagai A, Tavares RSN, Adamoski D, et al. Uv 254 nm is more efficient than uv 222 nm in inactivating SARS-cov-2 present in human saliva.
 Photodiagnosis Photodyn Ther 2022;39:103015.
 https://doi.org/https://dx.doi.org/10.1016/j.pdpdt.2022.103015.
- [11] Page MJ, Mckenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The prisma
 2020 statement: an updated guideline for reporting systematic reviews. Bmj 2021;372:n71.
 https://doi.org/10.1136/bmj.n71.
- [12] Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The prisma
 statement for reporting systematic reviews and meta-analyses of studies that evaluate
 healthcare interventions: explanation and elaboration. Bmj 2009;339:b2700.
 https://doi.org/10.1136/bmj.b2700.
- [13] Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. Robins-i: a
 tool for assessing risk of bias in non-randomised studies of interventions. Bmj 2016;355:i4919.
 https://doi.org/10.1136/bmj.i4919.
- [14] Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses.
 Bmj 2003;327(7414):557-60. https://doi.org/10.1136/bmj.327.7414.557.
- 438 [15] Schleusener J, Lohan SB, Busch L, Zamudio DD, Opitz N, Sicher C, et al. Irradiation of human 439 oral mucosa by 233 nm far uv-c leds for the safe inactivation of nosocomial pathogens. Sci Rep 440 2023;13(1):22391. https://doi.org/10.1038/s41598-023-49745-3.
- [16] Nishikawa J, Fujii T, Fukuda S, Yoneda S, Tamura Y, Shimizu Y, et al. Far-ultraviolet irradiation
 at 222 nm destroys and sterilizes the biofilms formed by periodontitis pathogens. Journal of
 Microbiology, Immunology and Infection 2024;57(4
):533-45. https://doi.org/https://dx.doi.org/10.1016/j.jmii.2024.05.005.
- [17] Ha J, Lee J, Kang D. Application of a 222-nm krypton-chlorine excilamp to control foodborne
 pathogens on sliced cheese surfaces and characterization of the bactericidal mechanisms. Int J
 Food Microbiol 2017;243:96-102.
- https://doi.org/https://dx.doi.org/10.1016/j.ijfoodmicro.2016.12.005.
- 449 [18] Wang D, Oppenlander T, El-Din MG, Bolton JR. Comparison of the disinfection effects of vacuum-uv (vuv) and uv light on bacillus subtilis spores in aqueous suspensions at 172, 222 and 254 nm. Photochem Photobiol 2010;86(1):176-81.
- 452 https://doi.org/https://dx.doi.org/10.1111/j.1751-1097.2009.00640.x.
- 453 [19] Kang JW, Lee JI, Jeong SY, Kim YM, Kang DH. Effect of 222-nm krypton-chloride excilamp 454 treatment on inactivation of escherichia coli o157:h7 and salmonella typhimurium on alfalfa 455 seeds and seed germination. Food Microbiol 2019;82:171-6.
- 456 https://doi.org/10.1016/j.fm.2019.01.019.
- 457 [20] Ong Q, Ronnie Teo JW, Dela Cruz J, Wee E, Wee W, Han W. Irradiation of uvc led at 277 nm

- inactivates coronaviruses in association to photodegradation of spike protein. Heliyon 2022;8(10):e11132. https://doi.org/https://dx.doi.org/10.1016/j.heliyon.2022.e11132.
- [21] Li T, Zhang Y, Gan J, Yu X, Wang L. Superiority of uv222 radiation by in situ aquatic electrode
 krcl excimer in disinfecting waterborne pathogens: mechanism and efficacy. J Hazard Mater
 2023;452:131292. https://doi.org/https://dx.doi.org/10.1016/j.jhazmat.2023.131292.
- [22] Ma B, Gundy PM, Gerba CP, Sobsey MD, Linden KG. Uv inactivation of SARS-cov-2 across
 the uvc spectrum: krcl* excimer, mercury-vapor, and light-emitting-diode (led) sources. Appl
 Environ Microbiol 2021;87(22):e153221. https://doi.org/https://dx.doi.org/10.1128/AEM.01532 21.
- [23] Lu YH, Wang RX, Liu HL, Lai A. Evaluating the performance of uv disinfection across the 222 365 nm spectrum against aerosolized bacteria and viruses. Environ Sci Technol
 2024;58(16):6868-77. https://doi.org/10.1021/acs.est.3c08675.
- [24] Gierke AM, Hessling M. Sensitivity analysis of c. Auris, s. Cerevisiae, and c. Cladosporioides
 by irradiation with far-uvc, uvc, and uvb. Pathog Immun 2024;9(2):135-51.
 https://doi.org/10.20411/pai.v9i2.723.
- [25] Monika, Madugula SK, Kondabagil K, Kunwar A. Far-uvc (222 nm) irradiation effectively
 inactivates ssrna, dsrna, ssdna, and dsdna viruses as compared to germicidal uvc (254 nm).
 Photochem Photobiol 2024. https://doi.org/10.1111/php.13961.
- [26] Sicher C, Opitz N, Becker PE, Lobo PN, Schleusener J, Kneissl M, et al. Efficacy of 233 nm led
 far uv-c-radiation against clinically relevant bacterial strains in the phase 2/ step 2 in vitro test
 on basis of en 14561 and on an epidermis cell model. Microbes Infect 2024;26(4):105320.
 https://doi.org/10.1016/j.micinf.2024.105320.
- 480 [27] Liang J, Liao C, Chang C, Lee C, Chen S, Huang S, et al. The effectiveness of far-ultraviolet 481 (uvc) light prototype devices with different wavelengths on disinfecting SARS-cov-2. Appl Sci 482 (Basel) 2021;11(22). https://doi.org/10.3390/app112210661.
- 483 [28] Clauss M, Mannesmann R, Kolch A. Photoreactivation of *escherichia coli* and *yersinia*484 *enterolytica* after irradiation with a 222 nm excimer lamp compared to a 254 nm low-pressure
 485 mercury lamp. Acta Hydrochimica Et Hydrobiologica 2005;33(6):579-84.
 486 https://doi.org/10.1002/aheh.200400600.
- [29] Ponnaiya B, Buonanno M, Welch D, Shuryak I, Randers-Pehrson G, Brenner DJ. Far-uvc light
 prevents mrsa infection of superficial wounds in vivo. Plos One 2018;13(2):e192053.
 https://doi.org/https://dx.doi.org/10.1371/journal.pone.0192053.
- [30] Narita K, Asano K, Morimoto Y, Igarashi T, Hamblin MR, Dai T, et al. Disinfection and healing
 effects of 222-nm uvc light on methicillin-resistant staphylococcus aureus infection in mouse
 wounds. J Photochem Photobiol B 2018;178:10-8.
 https://doi.org/10.1016/j.jphotobiol.2017.10.030.
- [31] Zwicker P, Schleusener J, Lohan SB, Busch L, Sicher C, Einfeldt S, et al. Application of 233 nm
 far-uvc leds for eradication of mrsa and mssa and risk assessment on skin models. Sci Rep
 2022;12(1):2587. https://doi.org/10.1038/s41598-022-06397-z.
- 497 [32] Narita K, Asano K, Morimoto Y, Igarashi T, Nakane A. Chronic irradiation with 222-nm uvc 498 light induces neither dna damage nor epidermal lesions in mouse skin, even at high doses. Plos 499 One 2018;13(7):e201259. https://doi.org/10.1371/journal.pone.0201259.
- 500 [33] Fukui T, Niikura T, Oda T, Kumabe Y, Nishiaki A, Kaigome R, et al. Safety of 222 nm uvc 501 irradiation to the surgical site in a rabbit model. Photochem Photobiol 2022;98(6):1365-71.

502 https://doi.org/https://dx.doi.org/10.1111/php.13620.

515

516

- [34] Sugiyama K, Kurachi K, Sano M, Tatsuta K, Kojima T, Akai T, et al. Bactericidal effect of far
 ultraviolet-c irradiation at 222 nm against bacterial peritonitis. Plos One 2024;19(11):e311552.
 https://doi.org/10.1371/journal.pone.0311552.
- [35] Nishikawa J, Tamura Y, Fujii T, Fukuda S, Yoneda S, Yamaura N, et al. Far-ultraviolet light at
 222 nm affects membrane integrity in monolayered dld1 colon cancer cells. Int J Mol Sci
 2024;25(13). https://doi.org/10.3390/ijms25137051.
- [36] Clauß M, Kolch A, Mannesmann R. Comparative examination of a 254 nm mercury lamp and a
 222 nm excimer lamp regarding the inactivation of different microorganisms. Proceedings of the
 2Nd International Congress On Ultraviolet Technology 2003.
- [37] Ramsay IA, Niedziela JC, Ogden ID. The synergistic effect of excimer and low-pressure
 mercury lamps on the disinfection of flowing water. J Food Prot 2000;63(11):1529-33.
 https://doi.org/10.4315/0362-028x-63.11.1529.
 - [38] Brenner DJ. Far-uvc light at 222 nm is showing significant potential to safely and efficiently inactivate airborne pathogens in occupied indoor locations. Photochem Photobiol 2023;99(3):1047-50. https://doi.org/10.1111/php.13739.
- 518 [39] Clauss M, Grotjohann N. Effective photoinactivation of alpha-amylase, catalase and urease at 519 222 nm emitted by an krcl-excimer lamp. Clean (Weinh) 2008;36(9).
- [40] Abdallah FB, Lagha R, Ellafi A, Namane A, Rousselle JC, Lenormand P, et al. Identification of
 outer membrane proteins altered in response to uvc-radiation in vibrio parahaemolyticus and
 vibrio alginolyticus. Indian J Microbiol 2012;52(4):660-5. https://doi.org/10.1007/s12088-012 0299-2.
- [41] Ma B, Seyedi S, Wells E, Mccarthy D, Crosbie N, Linden KG. Inactivation of biofilm-bound
 bacterial cells using irradiation across uvc wavelengths. Water Res 2022;217:118379.
 https://doi.org/https://dx.doi.org/10.1016/j.watres.2022.118379.
- [42] Welch D, Buonanno M, Grilj V, Shuryak I, Crickmore C, Bigelow AW, et al. Far-uvc light: a
 new tool to control the spread of airborne-mediated microbial diseases. Sci Rep 2018;8(1):2752.
 https://doi.org/https://dx.doi.org/10.1038/s41598-018-21058-w.
- [43] Matafonova GG, Batoev VB, Astakhova SA, Gómez M, Christofi N. Efficiency of krcl excilamp
 (222 nm) for inactivation of bacteria in suspension. Lett Appl Microbiol 2008;47(6):508-13.
 https://doi.org/10.1111/j.1472-765X.2008.02461.x.
- [44] Kitagawa H, Nomura T, Nazmul T, Omori K, Shigemoto N, Sakaguchi T, et al. Effectiveness of
 222-nm ultraviolet light on disinfecting SARS-cov-2 surface contamination. Am J Infect
 Control 2021;49(3):299-301. https://doi.org/10.1016/j.ajic.2020.08.022.
- [45] Karimpour M, Haghani M, Bevelacqua JJ, Welsh JS, Mortazavi SA, Mortazavi S, et al. The
 paradoxical role of far-ultraviolet c (far-uvc) in inactivation of SARS-cov-2: the issue of
 droplet size. J Biomed Phys Eng 2022;12(5):535-8. https://doi.org/10.31661/jbpe.v0i0.2204 1482.
- [46] Epa regulations about uv lights that claim to kill or be effective against viruses and bacteria,
 https://www.epa.gov/sites/default/files/2020-10/documents/uvlight-complianceadvisory.pdf;
 2020].
- [47] Cheng S, Xu B, Du Y, Li J, Ma Y, Meng X, et al. Dynamic disinfection effect of the upper-room
 222 nm ultraviolet radiation on the air in the emergency department in a tertiary general hospital
 in beijing, china. Shanghai Journal of Preventive Medicine 2024;36(9):836-41, 853.

546	https://doi.org/10.19428/j.cnki.sjpm.2024.24393.
547	[48] Sugihara K, Kaidzu S, Sasaki M, Ichioka S, Sano I, Hara K, et al. Ocular safety of 222-nm far
548	ultraviolet-c full-room germicidal irradiation: a 36-month clinical observation. Photochem
549	Photobiol 2024. https://doi.org/10.1111/php.14052.
550	[49] Park S, Rim D. Human exposure to air contaminants under the far-uvc system operation in an
551	office: effects of lamp position and ventilation condition. Sci Rep 2024;14(1).
552	https://doi.org/10.1038/s41598-024-75245-z.
553	[50] Buonanno M, Kleiman NJ, Welch D, Hashmi R, Shuryak I, Brenner DJ. 222 nm far-uvc light
554	markedly reduces the level of infectious airborne virus in an occupied room. Sci Rep
555	2024;14(1):6722. https://doi.org/10.1038/s41598-024-57441-z.
556	[51] Kitagawa H, Kaiki Y, Tadera K, Nomura T, Omori K, Shigemoto N, et al. Pilot study on the
557	decontamination efficacy of an installed 222-nm ultraviolet disinfection device (care222™),
558	with a motion sensor, in a shared bathroom. Photodiagnosis Photodyn Ther 2021;34:102334.
559	https://doi.org/10.1016/j.pdpdt.2021.102334.
560	[52] Garg H, Ringe RP, Das S, Parkash S, Thakur B, Delipan R, et al. Uvc-based air disinfection
561	systems for rapid inactivation of SARS-cov-2 present in the air. Pathogens 2023;12(3).
562	https://doi.org/10.3390/pathogens12030419.
563	[53] Minh Tran HD, Boivin S, Kodamatani H, Ikehata K, Fujioka T. Potential of uv-b and uv-c
564	irradiation in disinfecting microorganisms and removing n-nitrosodimethylamine and 1,4-
565	dioxane for potable water reuse: a review. Chemosphere 2022;286(Pt 2):131682.
566	https://doi.org/10.1016/j.chemosphere.2021.131682.
567	[54] Bansaghi S, Klein J. Evaluation of the antimicrobial effect of a far-uv radiation lamp in a real-
568	life environment. Infect Prev Pract 2024;6(4):100390.
569	https://doi.org/10.1016/j.infpip.2024.100390.
570	[55] Panzures A. 222-nm uvc light as a skin-safe solution to antimicrobial resistance in acute
571	hospital settings with a particular focus on methicillin-resistant staphylococcus aureus and
572	surgical site infections: a review. J Appl Microbiol 2023;134(3).
573	https://doi.org/10.1093/jambio/lxad046.

Table 1. Description of included studies on efficacy of 222-nm UVC compared with 254-nm

						222n	ım UVC	254nr	n UVC
No. Of Pape r	No. Of stud y	Author, year	Data source	Medium of microorganism s	Type of microorganisms	UV fluence1 (mJ/cm²)	Logs of cell reduction 1	UV fluence2 (mJ/cm²)	Logs of cell reduction 2
1	1	Buonanno,2017(1)	USA	Mammalian skin	MRSA	10	3.3	10	2.9
	2	Buonanno,2017(2)	USA	Mammalian skin	MRSA	30	4.6	30	4
	3	Buonanno,2017(3)	USA	Mammalian skin	MRSA	50	5.2	50	4.3
2	4	Kang,2019(1)	Korea	seed	E.coli	87	0.85	87	0.7
	5	Kang,2019(2)	Korea	seed	E.coli	174	1.77	174	1.16
	6	Kang,2019(3)	Korea	seed	E.coli	261	2.77	261	1.43
	7	Kang,2019(4)	Korea	seed	S. Typhimurium	87	1.22	87	0.75
	8	Kang,2019(5)	Korea	seed	S. Typhimurium	174	2.27	174	1.15
	9	Kang,2019(6)	Korea	seed	S. Typhimurium	261	3.04	261	1.85
3	10	Ha,2016(1)	Korea	sliced cheese surfaces	E. coli	0.87	2.46	0.87	1.26
	11	Ha,2016(2)	Korea	sliced cheese surfaces	E. coli	1.74	4	1.74	2.18
	12	Ha,2016(3)	Korea	sliced cheese surfaces	E. coli	2.61	4.66	2.64	3.34

	13	Ha,2016(4)	Korea	sliced cheese surfaces	S. Typhimurium	0.87	1.99	0.87	0.64
	14	Ha,2016(5)	Korea	sliced cheese surfaces	S. Typhimurium	1.74	3.55	1.74	1.63
	15	Ha,2016(6)	Korea	sliced cheese surfaces	S. Typhimurium	2.61	4.86	2.61	2.45
	16	Ha,2016(7)	Korea	sliced cheese surfaces	L. monocytogenes	0.87	2.01	0.87	0.41
	17	Ha,2016(8)	Korea	sliced cheese surfaces	L. monocytogenes	1.74	3.04	1.74	1.21
	18	Ha,2016(9)	Korea	sliced cheese surfaces	L. monocytogenes	2.61	4.58	2.61	2.02
4	19	Li,2023(1)	China	water	Ms2	12	4.5	12	1
	20	Li,2023(2)	China	water	E. coli	12	5	12	2.5
	21	Li,2023(3)	China	water	S. aureus	12	3.5	12	3
5	22	Ma,2021(1)	USA	thin-film buffered aqueous solution	SARS-CoV-2	1	1.2	1	0.5
	23	Ma,2021(2)	USA	thin-film buffered aqueous solution	SARS-CoV-2	2	2.4	2	2.4
	24	Ma,2021(3)	USA	thin-film buffered	SARS-CoV-2	3	3.5	3	2.1

				aqueous					
				solution					
	25		USA	thin-film					
		Ma,2021(4)		buffered	SARS-CoV-2	4	3.5	4	3.2
		Wia,2021(4)		aqueous	SAKS-COV-2	4	5.5	4	3.2
				solution	C				
6	26	Zhang,2022(1)	China	air	E. coli	0.164	0.7	0.164	0.66
	27	Zhang,2022(2)	China	air	P. alcaligenes,	0.164	1.1	0.164	1.12
	28	Zhang,2022(3)	China	air	S. epidermidis,	0.164	0.47	0.164	0.4
	29	Zhang,2022(4)	China	air	S. marcescens	0.164	0.9	0.164	0.78
	30	Zhang,2022(5)	China	air	Bacteriophage P22	0.164	0.43	0.164	0.4
7	31	War = 2010(1)	Canada	aqueous	Bacillus subtilis	10	0.5	10	0.1
		Wang,2010(1)		suspensions	Spores	10	0.3	10	0.1
	32	W 2010(2)	Canada	aqueous	Bacillus subtilis	15	1.22	1.5	0.2
		Wang,2010(2)		suspensions	Spores	15	1.23	15	0.3
	33	War = 2010(2)	Canada	aqueous	Bacillus subtilis	20	1.05	20	0.65
		Wang,2010(3)		suspensions	Spores	20	1.95	20	0.65
	34	W 2010(4)	Canada	aqueous	Bacillus subtilis	25	2.2	25	1 1
		Wang,2010(4)		suspensions	Spores	25	2.3	25	1.1
	35	Wana 2010(5)	Canada	aqueous	Bacillus subtilis	25	2.9	25	1.0
		Wang,2010(5)		suspensions	Spores	35	2.8	35	1.8
	36	War = 2010(6)	Canada	aqueous	Bacillus subtilis	70	2.5	70	2.45
		Wang,2010(6)		suspensions	Spores	70	3.5	70	3.45
8	37	Clauß,2006(1)	Germany	suspension	Aspergillus niger	325	3	370	3
		C14415,2000(1)		baspension	Tispoiginus ingel	323	3	370	3

	38	Clauß,2006(2)	Germany	suspension	Penicillium expansum	42	3	49	3
	39	Clauß,2006(3)	Germany	suspension	Bacillus cereus	69	3	140	3
	40	Clauß,2006(4)	Germany	suspension	Clostridium pasteurianum	7.9	3	6.7	3
	41	Clauß,2006(5)	Germany	suspension	Thermoactinomyce s vulgaris	46	3	115	3
	42	Clauß,2006(6)	Germany	suspension	Streptomyces griseus	20	3	154	3
	43	Clauß,2006(7)	Germany	suspension	Bacillus cereus	13.7	3	8.5	3
	44	Clauß,2006(8)	Germany	suspension	Deinococcus radiodurans	91	3	170	3
	45	Clauß,2006(9)	Germany	suspension	Arthrobacter nicotinovorans	17.7	3	12	3
	46	Clauß,2006(10)	Germany	suspension	Staphylococcus aureus	13.8	3	7.3	3
	47	Clauß,2006(11)	Germany	suspension	Pseudomonas aeruginosa	5.9	3	2.3	3
9	48	Ong,2022(1)	Singapore	Plates	hCoV-OC43	22	2.2	22	2
	49	Ong,2022(2)	Singapore	Plates	hCoV-229E	22	2	22	1
10	50	Sesti- Costa,2022(1)	Brazil	DMEM	SARS-CoV-2	9.4	4	5.6	4
	51	Sesti- Costa,2022(2)	Brazil	Saliva	SARS-CoV-2	277	4	7.0	4
11	52	Nishikawa, 2023(1)	Japan	plates	F. nucleatum	10	4	10	6
	53	Nishikawa, 2023(2)	Japan	plates	P. gingivalis	10	4.22	10	6

	54	Nishikawa, 2023(3)	Japan	plates	S. mutans	10	3.40	10	5
12	55	Schleusener, 2023(1)	Germany	human oral mucosa	MRSA	20	1.7	20	3.2
	56	Schleusener, 2023(2)	Germany	human oral mucosa	MRSA	40	3.8	40	5.7
	57	Schleusener, 2023(3)	Germany	human oral mucosa	MRSA	60	3.6	60	5.2
	58	Schleusener, 2023(4)	Germany	human oral mucosa	MRSA	80	3.1	80	5.9
13	59	Clauß, 2005(1)	Germany	plates	E. coli	10.6	4	6.9	4
	60	Clauß, 2005(2)	Germany	plates	Y. enterolytica	8.8	4	5.9	4
	61	Clauß, 2005(3)	Germany	plates	E. coli	16.1	4	18.2	4
	62	Clauß, 2005(4)	Germany	plates	Y. enterolytica	11.7	4	18	4
14	63	Sicher, 2024(1)	Germany	human epidermis equivalent models	MRSA	20	2.9	20	2.6
	64	Sicher, 2024(2)	Germany	human epidermis equivalent models	MRSA	40	3.1	40	3.6
	65	Sicher, 2024(3)	Germany	human epidermis equivalent models	MRSA	60	4.7	60	4.4

	66	Sicher, 2024(4)	Germany	human epidermis equivalent models	MRSA	80	4.5	80	4.1
	67	Sicher, 2024(5)	Germany	Nacl	MRSA	40	4.68	40	5.89
	68	Sicher, 2024(6)	Germany	artificial sweat (pH 8.4	MRSA	40	2.27	40	5.98
	69	Sicher, 2024(7)	Germany	Albumin 0.3%	MRSA	40	1.49	40	6.04
	70	Sicher, 2024(8)	Germany	artificial wound exudate	MRSA	40	1.46	40	5.79
	71	Sicher, 2024(9)	Germany	mucin 0.5%	MRSA	40	1.34	40	1.69
	72	Sicher, 2024(10)	Germany	Artificial saliva	MRSA	40	0.46	40	3.20
15	73	Lu, 2024(1)	Hong Kong, China	Bioaerosol	E. coli	1	21.93	1	25.09
	74	Lu, 2024(2)	Hong Kong, China	Bioaerosol	S. epidermidis	1	3.95	1	4.25
	75	Lu, 2024(3)	Hong Kong, China	Bioaerosol	S. enterica	1	4.97	1	5.73
	76	Lu, 2024(4)	Hong Kong, China	Bioaerosol	MS2	1	5.75	1	3.46
	77	Lu, 2024(5)	Hong Kong, China	Bioaerosol	P22	1	17.14	1	9.71
	78	Lu, 2024(6)	Hong Kong, China	Bioaerosol	Phi6	1	20.08	1	6.38
16	79	Monika, 2024(1)	India	plates	MS2	1	1.343	1	0.811
	80	Monika, 2024(2)	India	plates	Phi6	1	1.604	1	0.207

	81	Monika, 2024(3)	India	plates	M13	1	2.061	1	1.494
	82	Monika, 2024(4)	India	plates	T4	1	3.672	1	2.946
17	83	Gierke, 2024	Germany	plates	C. auris	4.3	1	6.1	1
18	84	Liang, 2021(1)	Taiwan,Chin a	plates	SARS-CoV-2	0.035	0.33	4.25	1.17
	85	Liang, 2021(2)	Taiwan,Chin a	plates	SARS-CoV-2	0.07	0.6	8.5	3.34
	86	Liang, 2021(3)	Taiwan,Chin a	plates	SARS-CoV-2	0.14	1.83	17	6
	87	Liang, 2021(4)	Taiwan,Chin a	plates	SARS-CoV-2	0.28	1.33	34	6

Table 2. Meta-Regression and Subgroup Analysis of studies on efficacy of 222-nm UVC

Subgroup	Interven	Pooled effect sizes	Heterogeneity (I ²),	Interaction,	Meta-regression		
	tions, n	(95% CI)	P	P a	Coef.	P	
All	87	1.382(1.153-1.656)	99.9%,p<0.001				
Country of study	·			Ç			
Asia	38	2.094(1.685,2.602)	99.6%,p<0.001				
America	14	1.705(1.419,2.048)	99.0%,p<0.001	< 0.001	-0.381	0.001	
Europe	31	0.711(0.509,0.993)	99.9%,p<0.001				
Africa	4	2.161(1.110,4.206)	99.2%,p<0.001				
Species of microorganisms			240				
MRSA	17	0.639(0.498,0.820)	99.8%,P<0.001				
E. coli	11	1.340(1.047,1.716)	99.2%,p<0.001				
SARS-CoV-2	10	2.938(0.678,12.722)	100.0%,p<0.001				
Bacillus subtilis Spores	6	2.410(1.562,3.718)	99.4%,p<0.001	< 0.001	0.352	0.381	
S. Typhimurium	6	2.023(1.745,2.344)	95.1%,p<0.001				
L. monocytogenes	3	3.020(2.054,4.440)	97.8%,p<0.001				
Ms2	3	2.316(1.119,4.792)	99.4%,p<0.001				
Others	31	1.236(0.972,1.573)	99.8%,p<0.001				
Medium of microorganisms							
Surface of solid	36	1.242(1.072,1.439)	99.6%,p<0.001				
Liquid	40	1.573(1.082,2.287)	99.9%,p<0.001	0.502	0.963	0.895	
Air	11	1.235(0.920,1.658)	98.4%,p=0.847				

Table 3. Description of included studies on safety of 222-nm UVC compared with 254-nm

No. of	No. of		Data	Medium of	Exposure	Study group	(222nm)	Control group	(254nm)
Paper	Study	Author, year	source	microorganisms	time	UV fluence1 (mJ/cm²)	CPD(%)	UV fluence2 (mJ/cm²)	CPD(%)
	1	Buonanno,2017(1)	USA	mouse skin	48h	25	0	25	23
1	2	Buonanno,2017(2)	USA	mouse skin	48h	50	0	50	40
	3	Buonanno,2017(3)	USA	mouse skin	48h	100	0	100	41
	4	Buonanno,2017(4)	USA	mouse skin	48h	150	0	150	48
2	5	Ponnaiya,2018(1)	USA	mouse skin	48h	40	1	40	82
	6	Ponnaiya,2018(2)	USA	mouse skin	48h	300	2	300	85
	7	Ponnaiya,2018(2)	USA	mouse skin	168h	40	1	40	32
	8	Ponnaiya,2018(2)	USA	mouse skin	168h	300	1	300	25
3	9	Narita,2017	Japan	mouse skin	1 h	150	0	150	58
	10	Zwicker,2022(1)	Germany	human skin model	immediatly	150	10.7	150	44.2
4	11	Zwicker,2022(2)	Germany	human skin model	24h	150	0	150	30.8
	12	Narita,2018(1)	Japan	mouse skin	immediatly	75	0	75	37
	13	Narita,2018(2)	Japan	mouse skin	1h	75	0	75	31
5	14	Narita,2018(3)	Japan	mouse skin	3h	75	0	75	28
	15	Narita,2018(4)	Japan	mouse skin	6h	75	0	75	21
	16	Narita,2018(5)	Japan	mouse skin	24h	75	0	75	13
	17	Fukui, 2021(1)	Japan	rabbit fat	1h	500	5.6	500	47.5
	18	Fukui, 2021(2)	Japan	rabbit fascia	1h	500	2	500	51.8
6	19	Fukui, 2021(3)	Japan	rabbit muscle	1h	500	2	500	36.5
	20	Fukui, 2021(4)	Japan	rabbit bone	1h	500	0.5	500	42.4

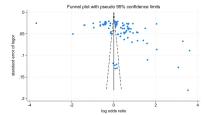
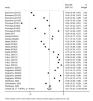

	21	Fukui, 2021(5)	Japan	rabbit cartilage	1h	500	0	500	17.3
	22	Sugiyama, 2024(1)	Japan	small intestine of rat	0.28h	500	1.1	75	6.97
	23	Sugiyama, 2024(2)	Japan	Colon of rat	0.28h	500	1.27	75	10.99
7	24	Sugiyama, 2024(3)	Japan	stomach of rat	0.28h	500	1.24	75	22.27
	25	Sugiyama, 2024(4)	Japan	liver of rat	0.28h	500	2.44	75	3.84
	26	Sugiyama, 2024(5)	Japan	spleen of rat	0.28h	500	1.74	75	12
8	27	Nishikawa, 2023	Japan	mice tongues	0.14h	1850	0	950	60.5
9	28	Schleusener, 2023	Germany	human oral	24	150	30	40	30
				mucosa					
10	29	Nishikawa, 2024	Japan	Colon cancer cell line	48h	30	3.37	30	13.1
				DLD-1	9				

Table 4. Meta-Regression and Subgroup Analysis of studies on safety of 222-nm UVC


Subgroup	Interventions	Pooled effect sizes	Heterogeneity	Interaction,	Meta-regressi	on		
	, n	(95% CI)	$(\mathbf{I}^2), P$	P ^a	Coef.	P		
All	29	-0.211(-0.245,-0.177)	100.0%,p<0.001					
Country of study	Country of study							
Asia	18	-0.153(-0.182, -0.124)	99.9%,p<0.001					
America	8	-0.348(-0.471,-0.225)	100.0%, p<0.001	0.002	-0.007	0.893		
Europe	3	-0.197(-0.244,-0.150)	99.1%,p<0.001					
Medium of microorganism	s							
Human skin model	4	-0.199(-0.238,-0.160)	98.7%,P<0.001					
Mouse skin	20	-0.250(-0.308,-0.192)	100.0%, p=0.372	< 0.001	-0.071	0.055		
Rabbit	5	-0.068(-0.091,-0.045)	99.8%,p<0.001					
Exposure time								
<1h	8	-0.145(-0.204,-0.087)	99.9%,P<0.001					
1-24h	9	-0.156(-0.2199,-0.113)	99.9%,p<0.001	0.004	0.052	0.360		
≥24h	12	-0.297(-0.382,-0.213)	99.9%,p<0.001					

Journal President

John Miller Cook

Journal Preside